Поиск в словарях
Искать во всех

Физический энциклопедический словарь - характеристики ядра

 

Характеристики ядра

характеристики ядра
Состав ядра. Ко времени открытия Я. а. были известны только две элементарные частицы протон и электрон. В соответствии с этим считалось вероятным, что Я. а. из них состоит. Однако в кон. 20-х гг. протонно-электронная гипотеза столкнулась с серьёзной трудностью, получившей название азотной катастрофы: по протонно-электронной гипотезе, ядро азота должно было содержать 21 частицу (14 протонов и 7 эл-нов), спин каждой из к-рых равен 1/2. Спин ядра азота должен был быть полуцелым, а, согласно опытным данным (по оптич. молекулярным спектрам), он оказался равным 1. Состав Я. а. был выяснен после открытия англ. физиком Дж. Чедвиком (1932) нейтрона со спином (установлено позже) 1/2. Идея о том, что Я. а. состоит из протонов и нейтронов, была впервые высказана в печати Д. Д. Иваненко (1932) и непосредственно вслед за этим развита нем. физиком В. Гейзенбергом (1932). Предположение о протонно-нейтронном составе ядра получило в дальнейшем полное эксперим. подтверждение.

В совр. яд. физике протон (р) и нейтрон (n) объединяются общим названием «нуклон» (N). Общее число нуклонов в Я. а. наз. массовым числом А, число протонов равно заряду ядра Z, число нейтронов N=A-Z. У ядер-изотопов одно и то же Z, но разные А и N, у ядер-и з о б а р одинаковое А и разные Z и N. В связи с открытием ну к лонных изобар (см. Резонансы) выяснилось, что внутриядерные нуклоны, взаимодействуя

друг с другом, могут превращаться в нуклонные изобары. В простейшем ядре— дейтроне, состоящем из одного протона и одного нейтрона, нуклоны примерно 1% времени должны пребывать в виде нуклонных изобар. Периодически на короткое время (~10-23—10-24 с) в ядрах появляются мезоны, в т. ч. пи-мезоны. Вз-ствие нуклонов сводится к многократным актам испускания -мезона одним из нуклонов и поглощения его другим. Возникающие обменные мезонные токи сказываются, в частности, на эл.-магн. свойствах ядер.

Взаимодействие нуклонов. Силы, удерживающие нуклоны в ядре, наз. ядерными. Они явл. проявлением самых интенсивных из всех известных в физике вз-ствий (см. Сильное взаимодействие). Яд. силы, действующие между двумя протонами в ядре, по порядку величины в сто раз интенсивнее электростатич. вз-ствия между ними. Важным свойством яд. сил явл. их изотопическая инвариантность, т. е. независимость от зарядового состояния нуклонов: яд. вз-ствия двух протонов, двух нейтронов или нейтрона и протона одинаковы, если одинаковы состояния относит. движения этих пар ч-ц и их спиновые состояния. Интенсивность яд. сил зависит от расстояния между нуклонами, от взаимной ориентации их спинов, от ориентации спинов относительно орбитального момента и радиуса-вектора, проведённого от одной ч-цы к другой. В соответствии с этим различают центральные силы, спин-спиновые, спин-орбитальные и тензорные.

Яд. силы характеризуются определённым радиусом действия, он определяется комптоновской длиной волны -мезонов, к-рыми обмениваются нуклоны в процессе яд. вз-ствия: r0=R/c, где  — масса -мезона. Наибольший радиус действия имеют силы, обусловленные обменом -мезонами. Для них r0=1,41 Ф (1Ф=10-13 см). Межнуклонные расстояния в ядрах имеют именно такой порядок величины, однако существенный вклад в яд. силы вносит обмен и более тяжёлыми мезонами. Точная зависимость яд. сил от расстояния между двумя нуклонами и относит. интенсивность яд. сил разного типа с определённостью не установлены. В многонуклонных ядрах возможны силы, к-рые не сводятся к вз-ствию только пар нуклонов. Роль т. н. многочастичных с и л в структуре ядер пока не выяснена.

Размеры ядер зависят от числа содержащихся в них нуклонов. Средняя плотность числа нуклонов в ядре (их число в ед. объёма) для всех многонуклонных ядер >10) практически одинакова. Это означает, что объём ядра пропорц. числу нуклонов А , а его линейный размер пропорц. A1/3. Эфф. радиус ядра R даётся формулой:

R=аА1/3, (1)

где константа а близка к радиусу действия яд. сил r0 и зависит от того, в каких физ. явлениях измеряется R. В случае т. н. зарядового радиуса ядра, измеряемого по рассеянию эл-нов на ядрах или по положению уровней энергии -мезоатомов,— a=1,12 Ф. Эфф. радиус, определённый из процессов вз-ствий адронов с ядрами (нуклонов, мезонов, -частиц и др.), оказывается неск. больше зарядового: а=1,2—1,4 Ф.

Плотность яд. в-ва чрезвычайно велика по сравнению с плотностью обычных в-в и составляет ок. 1014 г/см3. Плотность числа нуклонов в ядре  почти постоянна в центральной части ядра и экспоненциально убывает на периферии. Для приближённого описания эмпирич. данных иногда принимают след. зависимость  от расстояния r до центра ядра:

(r)=0/(1+exp[(r-Rc)/b]). (2) Эфф. радиус ядра R равен при этом R0+b; величина b характеризует размытость границы ядра и почти одинакова для всех ядер (b0,5 Ф). Параметр 0— удвоенная плотность на «границе» ядра [0=2(R0)], определяется из условия нормировки (равенства объёмного интеграла от  числу нуклонов А). Из ф-лы (1) следует, что размеры ядер варьируются по порядку величины от 10-13 см (1Ф) до 10-12 см (10 Ф) для тяжёлых ядер. Однако формула (1) описывает рост линейных размеров ядер с увеличением числа нуклонов лишь огрублённо при б. или м. значит. увеличении А. Изменение же размера ядра в случае присоединения к нему одного или двух нуклонов зависит от деталей структуры ядра и может быть иррегулярным. В частности (как показали измерения изотопич. сдвига ат. уровней энергии), иногда радиус ядра при добавлении двух нейтронов даже уменьшается.

Энергия связи и масса ядра. Энергия связи ядра ξсв — это энергия, к-рую необходимо затратить, чтобы расщепить ядро на отд. нуклоны. Она равна разности суммы масс входящих в него нуклонов и массы ядра, умноженной на с2.

ξсв=(Zmр+Nmn-М)с2. Здесь mр, mn и М — массы протона, нейтрона и ядра. Замечательной особенностью Я. а. явл. тот факт, что ξсв приблизительно пропорц. числу нуклонов в ядре, так что удельная энергия связи ξсвслабо меняется при изменении А (для большинства ядер ξсв68 МэВ). Это свойство, наз. насыщением ядерных сил, означает, что каждый нуклон эффективно связывается не со всеми нуклонами ядра (в этом случае энергия связи была бы пропорц. A2 при A>>1), а лишь с нек-рыми из них. Теоретически это воз-

923



можно, если силы при изменении расстояния изменяют знак (притяжение на одних расстояниях сменяется отталкиванием на других).

Зависимость ξсв от А и Z для всех известных ядер приближённо описывается полуэмпирич. массовой ф-лой (впервые предложенной нем. физиком К. Ф. Вейцзеккером в 1935):

где ,  и  — постоянные, имеющие размерность энергии. Первое, и наибольшее, слагаемое определяет линейную зависимость энергии связи от А ', второй член, уменьшающий энергию связи, обусловлен тем, что часть нуклонов находится на поверхности ядра; третье слагаемое — энергия электростатич. кулоновского отталкивания протонов (обратно пропорц. радиусу ядра и пропорц. квадрату его заряда); четвёртое слагаемое учитывает влияние на энергию связи неравенства числа протонов и нейтронов в ядре и, наконец, пятое слагаемое зависит от чётности чисел А и Z:

Эта сравнительно небольшая поправка оказывается, однако, весьма существенной для ряда явлений, и в частности для деления тяжёлых ядер. Именно она определяет делимость ядер нечётных по А изотопов урана под действием медленных нейтронов (см. Деление атомного ядра), что и обусловливает выделенную роль этих изотопов в яд. энергетике (см. Ядерное топливо). Оптим. согласие с опытом достигается при =14,03 МэВ, =13,03 МэВ, =0,5835 МэВ, =77,25 МэВ. Формулы (3) и (4) могут быть использованы для оценки энергий связи ядер, не слишком удалённых от полосы стабильности. Последняя определяется положением максимума ξсв как ф-ции Z при фиксированном А. Это условие определяет связь между Z и А для стабильных ядер:

Z=A (1,98+0,15A2/3)-1. (5)

Ф-ла (3) не учитывает квант. эффектов, связанных с деталями структуры ядер, к-рые могут приводить к скачкообразным изменениям ξсв вблизи нек-рых значений А и Z (см. ниже). Структурные особенности в зависимости ξсв от А и Z существенны в вопросе о предельно возможном значении Z, т. е. о границе периодической системы элементов. Эта граница обусловлена неустойчивостью тяжёлых

ядер относительно процесса деления. Теор. оценки вероятности спонтанного деления ядер не исключают возможности существования «островов стабильности» сверхтяжёлых ядер вблизи Z=114 и Z=126 (см. Трансурановые элементы).

Рейтинг статьи:
Комментарии:

Вопрос-ответ:

Ссылка для сайта или блога:
Ссылка для форума (bb-код):